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(57) 	 ABSTRACT 

A computer-based monitoring system and monitoring 
method implemented in computer software for detecting, 
estimating, and reporting the condition states, their changes, 
and anomalies for many assets. The assets are of same type, 
are operated over a period of time, and outfitted with data 
collection systems. The proposed monitoring method 
accounts for variability of working conditions for each asset 
by using regression model that characterizes asset perfor-
mance. The assets are of the same type but not identical. The 
proposed monitoring method accounts for asset-to-asset vari-
ability; it also accounts for drifts and trends in the asset 
condition and data. The proposed monitoring system can 
perform distributed processing of massive amounts of histori-
cal data without discarding any useful information where 
moving all the asset data into one central computing system 
might be infeasible. The overall processing is includes dis-
tributed preprocessing data records from each asset to pro-
duce compressed data. 

17 Claims, 9 Drawing Sheets 
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SYSTEM AND METHOD FOR MONITORING 
DISTRIBUTED ASSET DATA 

STATEMENT OF GOVERNMENT INTEREST 

This invention was made with government support under 
contract No. NNXI I CD04P awarded by NASA. The govern-
ment has certain rights in the invention. 

GOVERNMENT RIGHTS 

This invention was made with Government support under 
contract number NNXIICD04P awarded by NASA. The 
Government has certain rights in this invention. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention is generally related to monitoring systems, 

where data from an asset is collected and processed by a 
computing system. 

2. Description of the Related Art 
The monitoring and reporting of the anomalies could serve 

one or more purposes including quality assurance for manu-
facturing processes, improvement of operations safety (early 
warning of incipient problem), condition-based maintenance 
(CBM) of the assets, and performance monitoring. Examples 
of the performance monitoring are monitoring fuel consump-
tion of a power generation system or of an aircraft with the 
purpose of adjusting the hardware or operational regime in 
case of anomaly. 

The word "asset" as used herein may include a machine, an 
industrial plant, a vehicle, a manufacturing process, a build-
ing, a facility, a utility system, a computer network, or other 
engineered system. "Monitoring" here is defined as determin-
ing whether an asset is operating normally and, if not, deter-
mining more detailed information about the anomaly experi-
enced by the asset. "Monitoring system" here includes asset 
data management, monitoring methods, computational logic 
implementing the monitoring methods, software services 
supplementing the computational logic, systems architecture, 
and an arrangement for reporting the monitoring results. 

The simplest form of monitoring, known as Statistical Pro-
cess Control (SPC), has been extensively used for several 
decades. SPC has been introduced for quality assurance when 
the monitored asset is a manufacturing process. The original 
SPC methods are univariate: a time series for a selected mea-
sured or computed parameter is compared against control 
limits; the exceedances of the control limits are reported as 
anomalies. 

An extension of the SPC is Multivariate Statistical Process 
Control (MSPC). The MSPC monitors many data channels 
simultaneously and can provides significant improvement 
over univariate SPC monitoring of individual channels if the 
monitored channels are strongly correlated, as often is the 
case in practice. In general, MSPC requires computer pro-
cessing of streaming multivariable data. The MSPC found 
broader use in the last two decades with proliferation of 
digital computers, especially for monitoring of industrial 
plants and processes. 

SUMMARY OF THE INVENTION 

The inventive methodology is directed to methods and 
systems that substantially obviate one or more of the above 
and other problems associated with conventional techniques 
for monitoring distributed asset data. 

In accordance with one aspect of the invention, there is 
provided a system and method for monitoring a fleet of the 
assets of the same type using distributed computing. In the 
preferred embodiment, the assets are aircraft of the same type 

s and the asset data are flight performance data collected during 
the flight with a flight recorder and then transferred into a 
Local Data Repository in a ground computer system. There 
can be multiple Local Data Repositories. The fleet data has 
large scale: there is much more data than possible for in- 

fo memory computer processing. Because of that, the bulk of the 
collected historical data is stored in external memory (disk 
storage, magnetic tape, flash memory, or other) attached to a 
computer system. 

Various embodiments of the inventive concept allow sev- 
15 eral separate Local Data Repositories, each storing data from 

a part of the fleet. The fleet data could be partitioned into 
several repositories because the overall fleet consists of sev-
eral fleets belonging to several different operators, each col-
lecting and storing the data in a separate repository. In another 

20 preferred embodiment, the assets are machines in manufac-
turing plants and the data repositories are historian databases 
that local to each plant; there are several plants that are geo-
graphically distributed. In yet other preferred embodiment, 
the assets are power generating turbines installed at several 

25 locations each with its own historical data recorder that serves 
as the Local Data Repository. The Local Data Repositories 
could be geographically remote; in that case it is difficult to 
aggregate the collected data because it takes a lot of time to 
move several Terabytes (Tb) of data over long distance Inter- 

co net connection. Another reason why the data in different 
repositories might be kept local and separate is data privacy 
concern. The asset fleets and their local data repositories 
might belong to different owners even if all the assets might 
be produced by the same manufacturer. 

35 In one or more embodiments, each Local Data Repository 
is connected to a Local Computing Element (CE). Each CE 
might include one or several tightly coupled processors with 
shared data storage. In one embodiment, a single processor, a 
laptop computer, a desktop computer, a multi-processor 

40 workstation computer, a server, a mainframe, or a computer 
cluster might be used as a CE. The Local CE is used for 
processing the data in the Local Data Repository. One pos-
sible reason for distributing the data is that the entire data set 
is very large and has to be split between multiple storage 

45 locations. Other possible reason is the data privacy mentioned 
above. To aggregate all available information and get the full 
benefit from access to it, all Local Data Repositories are 
collected to a Central Computing Element through a data link. 
In the preferred embodiment, the data link is a computer 

5o network connection. The Central CE might be collocated 
with one of the Local CEs and might be implemented through 
software as a separate computational process sharing the 
computer hardware with one of the Local CE's. The data links 
connecting the Local CEs and the central CE could be remote 

55 network links that are relatively slow and do not allow for 
massive amounts of data to be transferred quickly. Embodi-
ments of this invention described computational processing 
of the data that includes data preprocessing performed 
locally, where the bulk of the data is stored. The preprocessing 

6o result, which is much smaller than the original `raw' data, can 
be then transferred over the network to the Central CE for the 
coordination. A distributed computing arrangement with 
multiple distributed CEs and relatively slow network links 
connecting the CEs falls into the computing paradigm known 

65 as `Grid Computing'. 
In one or more embodiments, the data from asset fleet are 

collected and processed as a series of data records (data 
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segments). Each data record contains a series of data samples 
from an asset; each data sample contains data from multiple 
data channels collected at coordinated time. When monitor-
ing the fleet data there is need to take into account record-to-
record (segment-to-segment) and asset-to-asset variability 
inherently present in the data. Such variability is known as 
`fixed effects' in statistics. The record-to-record variability 
might be caused by accumulation of deterioration in the asset. 
The asset-to-asset variability is caused by all assets being 
slightly different, even though they are of the same type. 
Various embodiments of the invention allow monitoring of 
large scale data taking into account the fixed effects. 

In one or more embodiments, to distinguish between the 
record-to-record variability, the asset-to-asset variability, and 
sample-to-sample noise inside each record, it is necessary to 
look at the entire data set data holistically. In other words, 
coordinated processing of all the available data from all assets 
is desired. This coordinated data processing might be per-
formed in a batch mode by processing the entire data set 
together. Alternatively, the coordinated data processing can 
be performed incrementally, by adding new data chunks and 
updating the intermediate processing state data to reflect all 
data processed so far. In the incremental data processing, the 
processing results are computed based on the intermediate 
processing state data. 

In one or more embodiments, to process the distributed 
data from the assets, each of the Local CE's preprocesses the 
data in the Local Data Repository and produces compressed 
data. The compressed data from each Local CE, which has 
substantially reduced size compared to the full data, is trans-
mitted over the data link to the Central Computing Element. 
By aggregating and post-processing the compressed data, the 
Central CE solves optimal estimation and detection problems 
for monitoring of the entire asset fleet taking into account the 
fixed effects. The described staged distributed processing of 
the asset data is performed such that the results are exactly the 
same optimal solution that would be obtained if it were pos-
sible to collect and aggregate all the data at a single location. 
The preferred embodiment of the compression approach and 
the centralized post-processing logic are presented in the 
detailed description of various embodiments of the invention 
below. 

In one or more embodiments, the output of the overall 
monitoring system is Monitoring Reports that are produced 
by the Central CE based on the computed solutions of the 
estimation and detection problems. The monitoring reports 
could include the results of anomaly detection and/or fault 
isolation (a.k.a. diagnostics), and/or forecasting (a.k.a. prog-
nostics) for the asset fleet. These reports could be displayed 
by the Central CE or transmitted to other computer intercon-
nected systems. 

In one or more embodiments of the fleet-wide monitoring 
system, the computational logic is implemented using a 
`pipeline' processing architecture. The computations are 
implemented as a series of `datapipes' connected through 
data buffers. Each datapipe is implemented using a compu-
tational agent that reads data from an input buffer and writes 
the results to an output buffer. The buffer is an area of com-
puter temporary or long term storage memory shared by the 
agents. For the distributed computations, the data is trans-
ferred between the buffers at different CEs using one of the 
existing distributing computing technologies. 

Since the fleet data sets are large, in one or more embodi-
ments, the buffer size can be large much bigger that the 
available operating memory. Therefore, each agent reads and 65 

processes data in smaller chunks. The entire buffer can be 
processed by sequentially iterating the chunk data processing 

DETAILED DESCRIPTION 

In the following detailed description, reference will be 
made to the accompanying drawing(s), in which identical 

4 
by the agent. Alternatively, it can be processed by running 
multiple copies of the agent on multiple processors in a CE to 
process several data chunks in parallel. The data processing 
could be performed completely in parallel in what is known as 

5  embarrassingly parallel computing; for example, the input 
data chunk pertains to one asset and the output data chunk 
pertains to the same asset. Alternatively, the datapipe might 
include gather action where the data for each asset are com-
bined to produce shared fleet-level data. Conversely, a 

10 datapipe might include a scatter action where fleet-level data 
enter into asset-specific processing. The sequence of the data 
processing operations for the preferred embodiment is 
described below. 

Additional aspects related to the invention will be set forth 
15  in part in the description which follows, and in part will be 

obvious from the description, or may be learned by practice of 
the invention. Aspects of the invention may be realized and 
attained by means of the elements and combinations of vari-
ous elements and aspects particularly pointed out in the fol- 

20  lowing detailed description and the appended claims. 
It is to be understood that both the foregoing and the fol-

lowing descriptions are exemplary and explanatory only and 
are not intended to limit the claimed invention or application 
thereof in any manner whatsoever. 

25 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings, which are incorporated in 
and constitute a part of this specification exemplify the 

30 embodiments of the present invention and, together with the 
description, serve to explain and illustrate principles of the 
inventive technique. Specifically: 

FIG.1 is a block diagram which illustrates composition of 
a representative fleet monitoring system implementing the 

35 method in accordance with an embodiment of inventive con-
cept. 

FIG. 2 is a block diagram which depicts overall function-
ality and component parts (steps) of the system and method in 
accordance with an embodiment of inventive concept. 

40 FIG. 3 is a block diagram which illustrates the 3-level 
regression data structure for an embodiment of this invention. 

FIG. 4 is a block diagram which depicts overall function-
ality and component parts (steps) of the optimal estimation 
and monitoring methods in accordance with an embodiment 

45 of inventive concept. 
FIG. 5 is a chart which shows exemplary time history plots 

for FOQA data for A319 aircraft and the regression model fit 
for this data. 

FIG. 6 is a block diagram that illustrates computation of 
50 covariance matrices for flight record in the Preprocessing 

step. 
FIG. 7 is a block diagram that illustrates post-processing 

computations of the estimate for the fleet average regression 
model B*, personalized regression models for each aircraft 

55 tail {13j}, and the collection of biases (drift) time series {a f} 

for each aircraft tail. 
FIG. 8 is a block diagram that illustrates the overall system 

implementation for the aircraft FOQA data monitoring 
example. 

60 	FIG. 9 is a block diagram that illustrates an embodiment of 
a computer/server system upon which an embodiment of the 
inventive methodology may be implemented. 
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functional elements are designated with like numerals. The 
aforementioned accompanying drawings show by way of 
illustration, and not by way of limitation, specific embodi-
ments and implementations consistent with principles of the 
present invention. These implementations are described in 
sufficient detail to enable those skilled in the art to practice the 
invention and it is to be understood that other implementa-
tions may be utilized and that structural changes and/or sub-
stitutions of various elements may be made without departing 
from the scope and spirit of present invention. The following 
detailed description is, therefore, not to be construed in a 
limited sense. Additionally, the various embodiments of the 
invention as described may be implemented in the form of 
software running on a general purpose computer, in the form 
of a specialized hardware, or combination of software and 
hardware. 

One or more embodiments of the invention address the 
need to monitor a plurality of assets of the same type —a fleet 
of the assets. The examples are aircraft fleet, ground vehicle 
fleet, power turbine fleet, and other. The fleet monitoring is 
characterized by an exceedingly large scale of the data and 
non-stationary nature of the data. The data from the assets in 
the fleet is collected as data records. Each data record consists 
of one or more coordinated samples of the asset data chan-
nels. The modern practices are to store collected historical 
data in a computer system. The asset monitoring requires 
computer processing of the data stored in the large historical 
data sets. 

The important problem features that need to be addressed 
by a fleet monitoring system include: 

1. Variability of the operating conditions for each asset. 
This issue is recognized and addressed in some of the prior art 
cited below. 

2. Variability of the assets. The assets are of the same type 
but not identical (there are fixed effects). There is also a need 
to take into account drifts and trend (longitudinal study). Very 
little prior art addresses this. 

3. Huge amounts of historical data. Discarding the col-
lected data is unreasonable because it might contain useful 
information. The data storage is become cheaper all the time 
and it is usually practical to keep all the historical data. At the 
same time, moving all the collected data into one central 
computing system to be processed there might be infeasible 
because of the network bandwidth limitations. This calls for 
distributed preprocessing of the collected data that is coordi-
nated with a subsequent centralized post-processing. Distrib-
uted preprocessing and subsequent centralized post-process-
ing is described in some prior art, but the information 
contained in the collected data is lost in such processing 

One or more embodiments of inventive concept allow 
keeping the raw data with all their information were it is 
collected. The combination of the distributed preprocessing 
and centralized post-processing of the preprocessed data 
described in this invention yields the same result as would be 
obtained if all data were gathered and processed in one loca-
tion. The described processing takes into account the vari-
ability of the operating conditions for each asset and the 
variability of the assets. 

Some aspects of the abovementioned important problem 
features are addressed in the prior art. For example, the data 
compression for monitoring is discussed in U.S. Pat. No. 
5,602,749, incorporated herein by reference. The idea is to 
perform preprocessing to detect anomalies and send anomaly 
data only for post-processing. This allows compressing the 
data greatly, but most of the raw data and information in the 
data is lost. In U.S. Pat. No. 6,789,052 by AMD, incorporated 
herein by reference, the data compression uses control model 

6 
for data reduction. Both U.S. Pat. No. 5,602,749 and U.S. Pat. 
No. 6,789,052 teach processing for a single asset and make no 
claims about fleet data monitoring. 

The variability of the assets in the fleet is considered in 
5  several prior patents. U.S. Pat. No. 5,737,215 by Caterpillar, 

incorporated herein by reference, teaches centralized pro-
cessing of data from all assets in the fleet; some of the com-
puted parameters are locally compared to the population 
mean. U.S. Pat. No. 6,609,051 by DaimlerChrysler teaches 

to centralized processing of data for a vehicle fleet. All data is 
transferred to a central computer rather that being accumu-
lated at each vehicle. The variability of the assets is recog-
nized by correcting the individual vehicle models based on 

15  the centralized processing results. U.S. Pat. No. 7,548,802 by 
Boeing, incorporated herein by reference, addresses monitor-
ing for a fleet of aircraft with all data transferred into an 
operations center. U.S. Pat. No. 7,761,201 by GE, incorpo-
rated herein by reference, teaches centralized monitoring, 

20 where a small amount of data is collected from each turbine 
engine in a fleet. U.S. Pat. No. 7,783, 507 by GE, incorporated 
herein by reference, teaches centralized monitoring for a plu-
rality of assets, such as locomotives. U.S. Pat. Nos. 7,983,809 
and 7,984,146 by Sikorsky, incorporated herein by reference, 

25  teach centralized monitoring for a fleet of aircraft, where data 
collected during the flight are downloaded from the aircraft 
into a ground system. 

There is limited prior art describing fleet monitoring with 
distributed processing of the data. U.S. Pat. No. 7,715,961, 

30 incorporated herein by reference, teaches distributed data 
mining at each vehicle that extracts data patterns for central-
ized proces sing; each vehicle has a small database and the raw 
data is discarded after it is processed. US Pat App 2008/ 

35  0069334, incorporated herein by reference, teaches distrib-
uted data processing with a plurality of distributed agents; 
each agent detects limit exceedances and only exceedances 
are communicated to the central server, the raw data is dis-
carded. 

40 	The processing of fleet data taking into account asset-to- 
asset variation in the fleet data is considered in the paper by E. 
Chu, D. Gorinevsky, and S. Boyd, "Scalable statistical moni-
toring of fleet data," World IFAC Congress, Milano, Italy, 
August 2011, incorporated herein by reference. This prior 

45 paper describes a 2-level regression model and the optimiza-
tion-based monitoring concept related to the described inven-
tion. The paper assumes that a limited amount of the data is 
collected for each asset, a single data vector. The aforesaid 
paper describes an algorithm that is related to the centralized 

5o data post-processing in the preferred embodiment of this 
invention and allows taking into account the variability of the 
operating conditions for each asset and the variability of the 
assets. The paper does not describe the computational archi-
tecture or implementation of the distributed monitoring sys- 

55 tem. In particular, the paper does not describe the distributed 
preprocessing of the data performed in combination with the 
centralized post-processing. 

Various embodiments of the inventive concept relate to a 
method for monitoring of a fleet of assets; the method can be 

60 implemented as a part of dedicated monitoring system or as a 
software program product. The proposed monitoring method 
is preferably implemented in software and can be adapted to 
work with different types of applications (asset types, moni- 
tored data, monitored behaviors, and systems) by changing 

65 data processing steps of the method, models used in the 
method, computing system configuration, and other config- 
urable parts of the method. The embodiments described 
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below describe examples of the assets for which this method 
can be implemented; the method is not limited to these 
example assets. 

FIG. 1 illustrates an embodiment with Local Computing 
Element (CE) 10 and Local CE 15 receiving Asset Data 20 
and 25 and storing these data locally in Data Repositories 30 
and 35 as data records. Each of the Local CEs 10 or 15 takes 
the data records in the respective Local Data Repository 30 or 
35 and preprocesses these data records to produce Com-
pressed Data 40 or 45. The Local CEs 10 or 15 is connected 
to a Central CE 60 through Data Links 50 and 55 respectively. 
The Compressed Data 40, 45 is transmitted over the Data 
Links 50, 55 to the Central CE 60 where it is collected and 
stored in Data Storage 70 for processing. The Central CE 70 
post-processes the Compressed Data from all Local CEs and 
produces Monitoring Reporting Data. The Monitoring 
Reporting Data is displayed or transmitted by the Central 
Computing Element as the monitoring system output. First, 
the post-processing computes the fleet model from the pre-
processed data. Second, the fleet model is used to produce 
anomaly reports and other parts of Monitoring Reporting 
Data. 

The figure shows two Local CEs; in fact, this invention is 
not limited to the number of Local CEs shown, there should 
be at least one Local CE, and there could be many CEs. The 
Local Data Repositories could include but are not limited to 
disk drives, tape storage, flash drives, integrated database 
management systems, optical disks, and other. The assets that 
provide data 20 and 25 can be any engineering systems, 
aircraft, propulsion systems, power generating equipment, 
power transmission and distribution equipment, engines, 
vehicles, machines, devices, electrical power systems, semi-
conductor manufacturing tools, HVAC equipment, computer 
networks, electronic equipments, laboratory equipment, 
computer systems, navigation systems, communication 
equipment, cell phones, etc. The proposed invention is appli-
cable to different types of assets including but not limited to 
the systems described in detail below. Each of the Local and 
Central CEs could be single processors, PC desktop or laptop 
computer, computer workstation, multiprocessor servercom-
puter, mainframe computer, or a computer cluster. The com-
munication between processors in each CE is relatively fast. 
The data links between CEs are preferably network connec-
tions, but can be also dedicated communication links. The 
claimed invention allows relatively slow data links between 
the Central and Local CEs, but fast links are also in the 
invention scope. One alternative embodiment of the compu-
tational architecture includes Central CE collocated with one 
of the distributed CE's and possibly sharing resources with 
this distributed CE. 

In one or more embodiments, it is important that the com-
pressed data obtained as the preprocessing output is relatively 
small in size, while the asset data can be large in size. This 
makes it possible to transfer the compressed data over the data 
links to the central CE for post-processing. Very large asset 
data sets can be processed in parallel by the distributed local 
CEs. The initial asset fleet data consists of individual data 
records, the preprocessing of each data record is independent 
of preprocessing of other data records. Preprocessing one 
data record at a time can be parallelized between multiple 
processors in one CE in addition to being distributed between 
different CE's. In parallel processing performed in one CE, 
the copies of the preprocessing logic (computational agents) 
running at different processors of one CE have access to the 
same data set. In the distributed preprocessing, different asset 
data sets are stored in local data repositories of the CEs. 

8 
In one or more embodiments, many steps of the described 

post-processing of the compressed data in the central CE can 
be parallelized as well, for example by doing the processing 
for data pertaining to one asset in parallel for each asset. 

5 In one or more embodiments, the computed anomaly 
results could be used to generate human readable reports from 
the anomalies detected as a result of the monitoring. The 
reporting of the anomalies can be made more detailed by 
pulling original asset data records from the distributed CE's. 

io Since there are a small number of anomalies, only a small 
number of the asset data records need to be transferred to the 
central CE for the reporting. In the preferred embodiment of 
the aircraft fleet performance monitoring, the anomalies that 
are monitored and reported include anomalies for asset model 

15 (M-type anomalies), for the record-to-record trend for a given 
asset (T-type anomalies), and for individual data records 
(I-type anomalies). 

FIG. 2 illustrates a functional decomposition of the pre-
ferred embodiment and shows the functions that process and 

20 generate the data illustrated in FIG. 1. The functions are 
implemented using the computing elements illustrated in 
FIG. 1. 

In one or more embodiments, the overall monitoring data 
function takes incremental data (Asset Data Records) or all 

25 fleet data (the data in Local Data Repositories) and reports 
monitoring results, such as anomalies. The claimed invention 
is an extension and generalization of known to Multivariate 
Statistical process Control (MSPC) systems; it allows coor-
dinated processing of data from two or more assets distributed 

30 over two or more Local CEs. In the preferred embodiment, 
the asset data are FOQA (Flight Operation Quality Assur-
ance) data collected from aircraft, its propulsion, and aircraft 
systems. The detailed description of functional components 
below is for the preferred embodiment of the FOQA data 

35 processing for aircraft fleet. The collection of these functions 
fits a 3-level regression to the fleet data andreports anomalous 
deviations from this model. The claimed invention is not 
limited to this embodiment and is applicable to other asset 
types and to other types of the models. 

40 	In FIG. 2, Asset Data are initially obtained from Asset Data 
Collection function 100 that interfaces with the assets and 
includes the collection logic. Asset Data that become avail-
able are added to Data Repository 110 in the form of Data 
Records, each integrating Asset Data collected over a certain 

45 interval of time. 
In one or more embodiments, the preprocess function 120 

produces Compressed Data providing a compact representa-
tion of the Data Record. The preprocessing handles one Data 
Record at a time. Each Data Record is preprocessed sepa- 

5o rately and independently. The preprocessing is distributed 
over multiple Local CEs. It can be parallelized (embarrass-
ingly parallel) for Local CEs that have multiple processors. 

In one or more embodiments, post-process function 130 is 
implemented in the Central CE andproduces a 3-level regres- 

55 sion model of the fleet data. The Compressed Data (prepro-
cessing results) for all assets received from the Local CEs are 
combined (gathered) by function 130 to compute fleet-level 
model and asset-level models. The fleet-level model contains 
a small amount of data and can be easily transferred around. 

6o The asset-level computations can be performed in parallel (or 
done sequentially) and independently for each asset; the fleet-
level model is used in the solution for each asset. If the 
asset-level solutions are distributed over many processors, 
then the fleet-level model is distributed (scattered) to all these 

65 processors. 
In one or more embodiments, the Preprocess and Post-

process steps might be repeated iteratively if necessary. The 
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iterative update is unnecessary in the preferred embodiment 
for quadratic optimization, but might be necessary in other 
embodiments where the 3-level regression problem includes 
inequality constraints and/or non-quadratic non-linear terms. 

In one or more embodiments, compute Monitoring Scores 5 
function 140 uses the 3-level regression model of the fleet 
data from post-process function 130 to produce Score Data. 
The 3-level regression Model includes the fleet-level model, 
individual models for each asset, and estimated trends for 
each asset. Score Data provide the input into monitoring io 
decision algorithms and are computed from the Compressed 
Data at the output of the Preprocess function 120 and the 
3-level regression Model. In the preferred embodiment, the 
Score Data include Hotelling T2 statistics computed for the 
3-level regression Model fit residuals for each Data Record. 15 

In one or more embodiments, monitoring Update function 
150 takes the Score Data computed by function 140 and 
produces Monitoring Scores as the main input into the 
anomaly detection decisions. Monitoring Update 150 can be 
Full or Incremental. Full Monitoring Update uses all relevant 20 
historical data in Data Repository and replaces the Monitor-
ing Scores with the new Score Data. Incremental Monitoring 
Update processes a new portion of the data only. Such incre-
mental processing would use the existing model and other 
interim processing data accumulated and stored in the Central 25 
CE. In general, the Incremental Monitoring Update also 
includes update of the model based on the new portion of the 
data. By re-computing only what is necessary the incremental 
processing can be very efficient. Incremental data processing 
could use the same functions as the full data processing. It will 30 
process the new data and use the already processed data in the 
pipeline architecture buffers where possible. Note that the full 
processing can be done as a series of increments. 

In one or more embodiments, monitoring function 160 
takes the Monitoring Scores produced by function 150 and 35 
flags anomalies in theAsset Data to produce Anomalies Data. 
In general, this is done by comparing the monitoring scores 
with the alarm thresholds. The thresholds can be predeter-
mined or computed. In the preferred embodiment the Moni-
toring Scores are Hotelling T2 or SPE (Squared Prediction 40 
Error) Q statistics, the anomaly decision is based on the 
Monitoring Scores being above the respective threshold and 
the thresholds are established from the false positive/false 
negative alarm tradeoff. In the preferred embodiment of air-
craft fleet monitoring, three types of anomalies are detected: 45 
(i) Anomalous Data Record Instance, the I-type anomaly, (ii) 
Anomalous Asset Trend, the T-type anomaly, and (iii) 
Anomalous Asset Model, the M-type anomaly. 

In one or more embodiments, reporting function 170 takes 
the Anomalies data by Monitoring function 160 and generates 50 
more detailed anomalies reports that have form accessible to 
human operators. The specific form of this representation is 
subjective and can vary broadly depending on the represen-
tation. For example the reporting can include summary con-
clusions for operators and maintenance personnel. Alterna- 55 
tively (or additionally) the report can include detailed 
engineering information in the forms of detailed graphs, 
charts, and tables for the engineering personnel. 

In one or more embodiments, the anomalies report might 
include creating a formatted and integrated Anomalies Report 60 
based on the Anomalies Data. The anomalies report might 
include Fault Isolation information for the detected anoma-
lies pointing at the possible root causes of the anomalies. The 
anomalies report might also include a Prognosis report that 
provides a forecast for the incipient, low level, anomalies 65 
developing into failures or faults in the assets. As a part of the 
detailed anomalies report preparation, Reporting function  

10 
170 implemented in the Central CE might request Detailed 
Anomaly Data from Local CE connected to the appropriate 
Local Data Repository 110. Such Detailed Anomaly Data 
could include the complete content of the Data Records that 
were found anomalous. 

In one or more embodiments, in addition to what is shown 
in FIG. 2, the monitoring method can include additional inter-
active functions for reporting out the computation details, 
status of the CEs and data, configuration, administration, etc. 
These supporting functions can be implemented using any of 
the known technologies. Examples of the additional support-
ing functions include 

Graphical user interface (GUI) to initiate different actions 
and examine the intermediate and final results. 

Methods for handling meta information, e.g., a database 
that keeps track of the processed data records, results, 
processing parameters, and processing conditions. 

An exemplary implementation of the computational logic 
for this invention can be explained in the context of regression 
model fitted to the data collected from the assets. A starting 
point of the explanation to follow is a basic linear regression 
model for a single asset performance within a single data 
record that can be written in the form 

y(r) B (t)+v(0 '  

where y is a vector of the performance (dependent) variables 
with components y,(t) and y2(01  x is a vector of regressors 
(explanatory variables), B is a matrix of regression param-
eters (the model), and v is a residual of the regression fit. The 
components of y and x are linear or nonlinear combinations of 
the asset data channels chosen in accordance with the known 
structure of the asset model. The regression model B com-
prises the regression model parameters. In the preferred 
embodiment of the aircraft fleet monitoring, an example 
regressor is dynamic pressure computed from aircraft air data 
system measurements, and the regression model B includes 
the aerodynamic coefficients. The described data-driven 
model can be used for MSPC monitoring of the residual 
r(t)y(t)—Bx(t). Covariance of the residual necessary for the 
MSPC monitoring can be estimated empirically. 

One or more embodiments of the inventive concept use a 
generalization of the simple regression model described 
above. FIG. 3 illustrates data set for the preferred embodi-
ment of aircraft FOQA data monitoring. Variables y,,f(t) 200 
and y2,,,(t) 205 plotted in FIG. 3 corresponds to the dependent 
variables in the preferred embodiment of aircraft FOQA data 
monitoring. In FIG. 3, abscissa 210 in the plots is the FOQA 
data sample number t within the flight. The ordinate 215 in the 
upperplot corresponds to the dependent variable y, 'jf215 that 
is computed from the raw FOQA data as aircraft angle of 
attack (AOA) times dynamic pressure (PDYN). The ordinate 
220 in the lower plot corresponds to the dependent variable 

Y2,/f 220  FUEL MASS FLOW that is taken directly from raw 
FOQA data. The indexes 1 and 2 at the dependent variables y 
point at the vector components, the indexes j and f separated 
by comma from the first index point at the asset (aircraft tail) 
number j and data records number f (consecutive flight num-
ber) for this asset. 

FIG. 3 illustrates that the fleet data can be thought of as 
three-level data. The occasions (data record numbers) f are at 
level 1. FIG. 3 shows the flight data, which is exemplified by 
the displayed plots, as plot planes 270 (for f ~=1), 275 (for f~=2), 
and 280 (for f~=3). The assets (aircraft tail numbers) j are at 
level 2, and sample number t within the data record at level 3. 
FIG. 3 shows the assets data, as plot slabs 290 (for j1) and 
295 (for j3). Each slab is shown to include three planes 
corresponding to three data records with numbers f ~=1, 2, 3; 
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each plane includes the plotted functions y, ,,,(t) 200 and 
Y2,Jt) 205 of the sample number t. 

In one or more embodiments, for the 3-level data, the basic 
regression model is extended by adding fixed effects and 
nonparametric model for longitudinal data. Longitudinal 
data, often called repeated measurements in medicine and 
panel data in the social sciences, describe model change in 
consecutive data records (e.g., consecutive flights of the same 
aircraft). The following 3-level regression model with fixed 
effects and longitudinal data is used 

yif(t) B,,,#)+ajf+,,j(t), 	 (1) 

where B. is the matrix of regression parameters for asset 
number j, vectors ajf  describenonparametric fixed effects for 
the longitudinal data (asset-specific trends), and vectors vjf  

describe random effects in each occasion. In FIG. 3, the solid 
curves 235 and 255 illustrate the data y,f(t) and the dashed 
curves 240, 260 illustrate the regression fit. 

FIG. 4 illustrates a preferred embodiment for the optimi-
zation-based fleet monitoring approach that is based on the 
3-level regression model. A variety of regression fitting and 
monitoring approaches can be used in accordance with this 
invention. As an illustrative example, the regression fit can be 
expressed as minimization of the following Fleet Index 

2 
L—  EL, 

+1, YIIBf -B,11F 	
O 

J 	 J 

1  
LJ =E,M,+P2Y,, Ilaff - aJ,f-, 11 z 	 (3) 

f 	f 

MJf = 2Y, Ilyff(t) - BJxJf (t) - aff  112 	
(4) 

f 

In one or more embodiments, fleet Index L in (2) consists 
of three parts 

1. Model fit error index for the fleet computed by summing 
up the individual model error indexes Mjfin (4) over all data 
records for all assets in the fleet. 

2. The quadratic penalty of the trend increment computed 
by summing up the individual trend increment penalties //a,,- 
aj  ,//2  in (3) over all data records for all assets in the fleet. 

3. The quadratic model variation penalty computed by 
summing up the individual model variation penalties //B j- 
B*H , where B* is an unknown average fleet model. 

In one or more embodiments, loss index (2) includes all 
historical data available for all assets in the fleet through the 
observation period. This data is very large and distributed 
over data repositories Local CE's. The claimed invention 
makes it possible to compute the solution of optimal estima-
tion problem (2) efficiently using the claimed distributed 
computing architecture consisting of Local CEs and the Cen-
tral CE. The computed optimal solution is exactly the same as 
if all the data were available at one location and could fit into 
computer memory for solving (2). 

In one or more embodiments, when evaluating or optimiz-
ing index (2), most of the computations involving the bulk of 
the Asset Data in (2) are related to indexes Mjf in (4). These 
indexes can be represented as 

M  ~B~ aJQ[IBJ-a 1 T 	 (5) 

where Qjf is the covariance matrix computed for the data 
record f obtained from asset j  

10 	A constant bias z,f(t)=l is assumed inside each data record. 
Other bias shapes are also compatible with the formulation 
above. If data record is large, the covariance matrix Q~f  is 
much smaller in the data size compared to all data in the data 
record. In the preferred embodiment of aircraft fleet monitor- 

15 ing, the data collected in one flight might contain a few dozen 
channels sampled at 10,000 instances several Mb of data at 
all. For a couple dozen regressors, the covariance matrix Qlf 
would take a few Kb of memory this constitutes data reduc- 

20  tion in excess of 1000:1. The above reasoning defines the data 
pre-processing performed at each Local CE. The data for the 
fleet is preprocessed one data record at a time to provide a 
compact representation of the data in that data record in the 
form of the covariance matrix Qe  

25  In one or more embodiments, the minimization of index L 
(2) can be interpreted as optimal Bayesian estimation of the 
regression coefficients from the data. FIG. 4 illustrates the 
described optimization-based estimation formulation. Given 
the Asset Fleet Data 310, the optimization-based estimation 

30 formulation 300 defines the optimal solution 320. The Asset 
Fleet Data 310 is used to compute the dependent variables 
y,f(t) and explanatory variables x t(t) used in the formulation. 
The optimal solution 320 includes regression models Bj  and 

35  trends ajf  showntogether as 330. 

Optimal Estimation Formulation block 300 in FIG. 4 illus-
trates formation of Fleet Index L (2). Individual model fit 
error indexes Lj  in (3) for j=1 and j=n are shown as Index, 365 
and Index„ 385. Computing indexes 365 and 383 is based on 

40  y,f(t), x,f(t) shown for j=1 and j=n as Data, 350, Data z  370, the 
models Bj  shown as 362, 382, and trends ajf  shown as 360, 
380. Overall Loss Index L (2) is shown as Fleet Index 399 and 
includes indexes 365, 383 along with a Model Index. The 
Model Index described the deviation of models B, shown as 

45  Model, 362 and Model 382 from B* shown as Fleet Average 
Model 390. 

In one or more embodiments, monitoring and reporting of 
anomalies rely on the knowledge that the majority of the 

50 assets in the fleet and data sets for each asset are nominal. A 
small percentage of the assets and/or the data sets might be 
abnormal and need to be reported as such. The innovation 
presents an automated system that processes the data without 
a human intervention and provides reports anomaly reports in 

55 the end. These reports provide decision support and can be 
reviewed or acted upon by a human operator. 

In one or more embodiments, minimizing index (2) yields 
estimates of the regression models B , and trends a f for all 

60 assets in the fleet shown as Models & Trends 320. The esti-
mates and the asset data yjf  allow computing model fit residu-
als r,f(t)=y,f(t)-B~x,f(t)-a.f, The estimates and the residuals are 
used in Monitoring function 340 to provide Anomaly detec-
tion, Diagnostics, and Predictive trending (prognostics). A 

65 variety of approaches to anomaly detection, diagnostics, and 
prognostics cab be used in conjunction with the claimed 
invention. One example is described below. 

12 

QJf -  Y,  q f (t)q f (t)T  , 	
(6) 

r 

5 	 yff (t) 

gff (t) = xJf (t) 

Zff(t) 
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In one or more embodiments, anomaly detection in aircraft 
fleet data can be performed by computing Hotelling T2 sta-
tistics for the filtered trends ajf  forall aircraft to monitor the 
drift. The abrupt change can be detected by mentoring T2 for 
regression model residuals ref  

In one or more embodiments, diagnostics of an output fault 
with signature f can be performed by monitoring a contribu-
tion reconstruction index obtained by projecting the drift ajfor 
residuals error rjf  ontothe fault signature direction f in the 
metrics defined by the empirical noise covariance. For an 
input fault with signature g, the contribution reconstruction 
index is obtained by projecting rjf  ontoBig. 

In one or more embodiments, predictive trending for the 
fleet can be performed by applying modern forecasting meth-
ods to the time series ajf, ... , aj, that express the trends. 

In one or more embodiments, the analytical approach is 
based on performing the fleet monitoring by using decision 
variables (regression model fit solution) obtained by mini-
mizing a quadratic loss index for the fleet data. The discussion 
implied that the same regressors are used for all channels. The 
alternative embodiments include, without limitation: 

1. Using different regressors for different channels, which 
is equivalent on constraining the regression coefficients (deci-
sion variables) to have a fixed sparsity pattern. The regressor 
choice and the sparsity pattern could be determined from first 
principle physics modeling, from experience, from explor-
atory data mining, by using machine learning methods, or in 
some other way. 

2. Formulating a non-quadratic data fit problem, such as 
one of the machine learning data modeling problems. 

3. Using an iterative distributed solver for the non-qua-
dratic problem. 

4. Including fault isolation computations where alternative 
fault hypothesis are evaluated in the monitoring function to 
produce a short list of specific fault conditions likely to be 
present for each anomaly found. 

5. Performing incremental processing of the data to pro-
vide an efficient solution for the incrementally extended fleet 
data set. Such solution would involve using the interim com-
putation results for earlier processed fleet data. 

Aircraft Fleet Monitoring Example 
In one or more embodiments, the raw data are the Flight 

Operations Quality Assurance (FOQA) data collected from 
aircraft. In this example, the FOQA data is used to character-
ize flight dynamics of aircraft in a near-steady flight around 
the cruise regime. In this example, one data record includes 
all the data collected in one flight of a given aircraft. An 
example of regression data fit for FOQA data for A319 air-
craft is shown in FIG. 5. The labels show the response vari-
ables y, The solid lines show yk(t) plots, the dashed lines 
show the regression model fit. 

In one or more embodiments, the airframe performance is 
modeled as linear regression as described above. The exem-
plary embodiment uses the following regressors x (explana-
tory variables) that are computed based on the fan rotation 
speeds for the left (L) and right (R) engines N, J_, Nl ,R , the air 
density p, ,,, the aircraft mass m, the aircraft roll a_,, accel-
eration, the dynamic pressure q, the angle of attack (AOA) a, 
and control surface deflections ueZev,L, ueZev R, ustab, urnaaer• 

FIG. 5 shows the regression model fit obtained using the 
described regressors x for the following response variables y 

M x LONG ACC 410 corresponds to maZong 
M x NORM ACC 420 corresponds to manor- 
M x LAT ACC 430 corresponds to maZat 
AOA x QBAR 440 corresponds to qa 
ROLL RATE x QBAR 450 corresponds to grbu  

14 
AIL SUM x QBAR 460 corresponds to q(ua Ze— ,I+ 

Ulderon,R) 

ELEV DIFF x QBAR 470 corresponds to q(ueZev,L ueiev R) 

NI DIFF x RHO 480 corresponds to (N,,i  N,,R)p aZr  
5 	ELEV SUM x QBAR 490 corresponds to q(ueZev,L+ueiev R) 

where along, aZat, an—  are the longitudinal, lateral, and 
normal accelerations of the aircraft center of gravity (CG), 
r ,z  is the roll rate, uaderon,L  and uaderon,R  are control surface 
deflections. Other variables are as defined above for regres- 

io sors x. The solid lines in the FIG. 5 plots show the actual 
aircraft data and the dashed lines show the regression fit. 

This example uses a 3-level regression model for a fleet of 
aircraft where 

t is a sample number inside a FOQA flight data set (data 
15 	record) 

J is an aircraft tail number 
f is a consecutive flight number for a given tail 
In one or more embodiments, the 3-level linear regression 

model for longitudinal (time dependent) data with fixed 
20 effects is described by (1). The regression fit problem is to 

minimizethe loss index L (2)-(4) over aj., Bj, and B. Using the 
representation (5) for indexes M f in (4), the solution of the 
optimal estimation problem for the regression parameters 
now looks as follows: first compute the covariance matrices 

25 {Q,f} for all data records for all assets, then minimize the loss 
index L with respect to {B*, {Bj}, {ajf}}. 

FIG. 6 illustrates computation of covariance matrices WO 
in accordance to (6) for flight record (the Preprocessing step). 
Data Record 510 (FOQA dataset for the fight) is used to 

30 compute the nonlinear regressors x t(t) through the flight, this 
is shown as Compute Explanatory Variables 520. The same 
data are used to compute the dependent variables y f (t) 
through the flight, this is shown as Compute Response Vari-
ables 520. The multivariable time series x,f (t) and y,f (t) are 

35 then combined to compute Q j, Data Record Covariance 540, 
in accordance with (6) (as mentioned above, it can be 
assumed that z t(t)=1. The preprocessing is done for one Data 
Record at a time. In accordance with the claimed invention it 
is carried in the Local CEs in a distributed manner. The 

40 preprocessing can be also parallelized within each CE. 
FIG. 7 illustrates the post-processing computations that 

compute the estimate for the fleet average regression model 
B *,personalized regression models for each aircraft tail {B j}, 
and the collection of biases (drift) time series {a f} for each 

45 aircraft tail by efficiently minimizing loss index L (2)-(4). The 
estimates use the covariance matrices Q (shown as 610 for all 
flight records. The loss index has form (2), where Lj  (3), (4) 
are quadratic forms in B a 1 , ... , a r,. Assuming that B* is 
known, the result of minimization of L with respect to the tail 

50 data B , a 1 , ... , a r, can be written in the form 

Bj=S,B *+Rj, 	 (7) 

where the solution partials matrices S , R can be computed 
from the data for tail j only. The partials S , R. are shown as 

55 630. Computing these matrices is shown as Presolve 620. The 
presolve computations for different tails are independent and 
can be carried in parallel. Substituting the solutions (7) into 
loss index L (2) allows to compute the optimal solution for 
average model 8 through the partials S and R.. This compu- 

60 tation is shown as Combine Models 640; it produces Fleet 
Model B* 650. With B* known, Solve 660 computes the 
solution for a given tail j as the minimum of L with respect to 
the tail data expression using (7) for B and accompanying 
expressions for the trend a 1 , ... , a r,. The above described 

65 solution to the problem of minimizing the quadratic loss 
index L (2) is a batch computation solution; the same result 
can be also computed recursively as clearto somebody skilled 
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in the art. The recursive computations can use a version of the 
well-known Recursive Least Squares method, a Kalman Fil-
ter method, an Information Filter Method, or other similar 
representation of a recursive solution of the quadratic optimi-
zation problem (2). By using the recursive formulation, the 
coordinated data processing can be performed incrementally, 
by adding new data chunks and updating the intermediate 
state data of the recursive computations, such as the Kalman 
Filter states, to reflect all data processed so far. In the incre-
mental data processing, the processing results, such as the 
monitoring results described below, are computed based on 
the intermediate processing state data, such as the Kalman 
Filter states. 

In one or more embodiments, monitoring function 680 uses 
the computed models and trends {B*, {13j}, {af}} as an input 
to find anomalies of the M-type, T-type, and I-type 

Model (M-type) Anomalies are monitored by applying 
MSPC to the set of the model matrices Bj. MSPC looks 
for the anomalies in the cross-fleet data by computing 
Hotelling T2 statistics for each vector. The models B j  
outside of the scaled empirical covariance ellipsoid are 
marked and reported as anomalies. 

Trend (T-type) Anomalies are monitored by applying 
MSPC to the estimated trends A.f  The trend covariance 
is computed across all tails and the outliers detected 
using a modified Hotelling T2 statistics. 

Instance (1-type) Anomalies are monitored similar in spirit 
to how the trends are monitored. The empirical covari-
ances are computed by summation at three levels: all 
time samples for all flights for all tails. Such monitoring 
can be performed using the preprocessed covariance 
without the need to work with the raw data records. 

The exemplary overall system implementation for the 
described example of FOQA data monitoring is illustrated in 
FIG. 8. Overall data processing is decomposed into Tier 1, 
Tier 2, and Tier 3 functions. 

In one or more embodiments, tier 1 Data Records 710 is 
implemented on the Local CEs and deals with raw FOQA 
data in the distributed Asset Data Repositories 715. Prepro-
cessing one record at a time 720 is amenable to embarrass-
ingly parallel implementation. Distributed processing of 
local data using networked remote computers can be 
described as grid computing. 

In this example, Data Records 710 are FOQA flight data 
sets that contain 300 channels sampled at 1 Hz for a few 
hours of one flight. Each record takes on the order of 100 
Mb of disk space. The entire fleet data set has 100,000 
flight records and takes 10 Tb. 

Tier 1 Pre-processing agent processes one flight record at a 
time and computes the covariance matrix Q. One 
example implementation involved 20 regressors, so 
covariance matrix 20x20 takes about 1 Kb. This pro-
vides a 10,000:1 data reduction. Another example 
implementation involved smaller flight records with 50 
channels sampled at 4000 instances each. This provides 
data reduction in excess of 1,000:1. 

The architecture allows for other types of Tier 1 pre-pro-
cessing as long as (i) they provide substantial data reduc-
tion (ii) by using the preprocessed data it is possible to 
obtain the result as accurate as by processing the raw 
data in a centralized way. 

The processing of FOQA data for an aircraft fleet with 
100,000 flights for hundreds of aircraft can be completed 
in less than an hour on a few distributed computers. 

In one or more embodiments, Tier 2 Assets 730 and Tier 3 
Fleet 740 are implemented on a Central CE, which might be 
a multiprocessor computer system. 

16 
Tier 2 receives the preprocessing results from Tier 1 dis-

tributed computers and aggregates them by the tail num-
ber (the asset number in the fleet). With the 1:1000 data 
reduction, the fleet data takes the total of 10 Gb. This is 

5 	little enough to be processed on a single computer. 
Asset-level processing 735 in Tier 2 collects and processes 

the data for all flights of the same tail. For a fleet of 1000 
aircraft this makes 10 Mb per asset, which easily fits into 
the memory for the processing. The asset-level process- 

10 ing is done separately and independently for each tail. 
This processing can be done in parallel on the multiple 
processors of Tier 2 CE or sequentially or both. 

Tier 3 Fleet-level coordination 745 gathers Tier 2 Asset-
level results and scatters coordinated Tier 2 updates. The 

15 	fleet-level data at Tier 3 is on the order of 100 Kb in size. 
Tier  also implements Fleet Monitoring Report ofAnoma-

lies 750. 
The described exemplary grid computing framework for 

data mining and monitoring could be scaled further to 
20 Petabyte scale. For such scale, eachTier 1 CE wouldresemble 

a cluster with parallel execution of the preprocessing. Tier 2 
would resemble a cluster processing of under 1 Tb of data. 
Tier 3 would be used to coordinate Tier 2 processors in the 
cluster. 

25 

Alternate Embodiments 

In one or more embodiments described above, the fleet of 
apparatuses or assets being monitored is the fleet of the air- 

30 craft and the data collected from the aircraft data recorder are 
FOQA (Flight Operation Quality Assurance) data. The alter-
native embodiments include, without limitation: 

1. Monitoring a fleet of aircraft engines by collecting the 
engine flight (mission) data from the engine avionics. 

35 2. Monitoring a fleet of ground vehicles, such as trucks, 
buses, or cars by collecting the fleet data 

3. Monitoring a fleet of semiconductor manufacturing 
tools deployed at different fabrication plants (fabs). A semi-
conductor manufacturing tool is an apparatus for implement- 

40 ing a stage of the semiconductor device manufacturing. 
4. Monitoring electric power generation equipment such as 

a fleet of power turbines or a fleet of wind power generators. 
5. Monitoring electrical grid equipment such as a fleet of 

transformers. 
45 	Each of the alternative embodiments would use a different 

set of the regressors at the data preprocessing step. The over-
all system design and method for DFM are as described in this 
disclosure. 
Exemplary Computer Platform 

50 	FIG. 9 is a block diagram that illustrates an embodiment of 
a computer/server system 900 upon which an embodiment of 
the inventive methodology may be implemented. The system 
900 includes a computer/server platform 901, peripheral 
devices 902 and network resources 903. Peripheral devices 

55 902 may be absent if computer system 900 is implemented as 
an embedded system, e.g., as an embedded control and moni-
toring system which is integrated with the apparatus. 

The computer platform 901 may include a data bus 904 or 
other communication mechanism for communicating infor- 

60 mation across and among various parts of the computer plat-
form 901, and a processor 905 coupled with bus 901 for 
processing information and performing other computational 
and control tasks. Computer platform 901 also includes a 
volatile storage 906, such as arandom access memory (RAM) 

65 or other dynamic storage device, coupled to bus 904 for 
storing various information as well as instructions to be 
executed by processor 905. The volatile storage 906 also may 
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be used for storing temporary variables or other intermediate 
information during execution of instructions by processor 
905. Computer platform 901 may further include a read only 
memory (ROM or EPROM) 907 or other static storage device 
coupled to bus 904 for storing static information and instruc- 5  
tions for processor 905, such as basic input-output system 
(BIOS), as well as various system configuration parameters. 
A persistent storage device 908, such as a magnetic disk, 
optical disk, or solid-state flash memory device is provided 
and coupled to bus 901 for storing information and instruc-
tions. 

Computer platform 901 may be coupled via bus 904 to a 
display 909, such as a cathode ray tube (CRT), plasma dis-
play, or a liquid crystal display (LCD), for displaying infor- 15  
mation to a system administrator or user of the computer 
platform 901. An input device 910, including alphanumeric 
and other keys, is coupled to bus 901 for communicating 
information and command selections to processor 905. 
Anothertype ofuser input device is cursor control device 911, 20 

such as a mouse, a trackball, or cursor direction keys for 
communicating direction information and command selec-
tions to processor 904 and for controlling cursor movement 
on display 909. This input device typically has two degrees of 
freedom in two axes, a first axis (e.g., x) and a second axis 25 

(e.g., y), that allows the device to specify positions in a plane. 
An external storage device 912 may be connected to the 

computer platform 901 via bus 904 to provide an extra or 
removable storage capacity for the computer platform 901. In 
an embodiment of the computer system 900, the external 30 

removable storage device 912 may be used to facilitate 
exchange of data with other computer systems. 

The invention is related to the use of computer system 900 
for implementing the techniques described herein. In an 
embodiment, the inventive system may reside on one or mul- 35 

tiple machines such as computer platform 901. According to 
one embodiment of the invention, the techniques described 
herein are performed by computer system 900 in response to 
processor 905 executing one or more sequences of one or 
more instructions contained in the volatile memory 906. Such 40 

instructions may be read into volatile memory 906 from 
another computer-readable medium, such as persistent stor-
age device 908. Execution of the sequences of instructions 
contained in the volatile memory 906 causes processor 905 to 
perform the process steps described herein. In alternative 45 

embodiments, hard-wired circuitry may be used in place of or 
in combination with software instructions to implement the 
invention. Thus, embodiments of the invention are not limited 
to any specific combination of hardware circuitry and soft-
ware. 50 

The term "computer-readable medium" as used herein 
refers to any medium that participates in providing instruc-
tions to processor 905 for execution. The computer-readable 
medium is just one example of a machine-readable medium, 
which may carry instructions for implementing any of the 55 

methods and/or techniques described herein. Such a medium 
may take many forms, including but not limited to, non-
volatile media or volatile media. Non-volatile media 
includes, for example, optical or magnetic disks, such as 
storage device 908. Volatile media includes dynamic 60 

memory, such as volatile storage 906. 
Common forms of computer-readable media include, for 

example, a floppy disk, a flexible disk, hard disk, magnetic 
tape, or any other magnetic medium, a CD-ROM, any other 
optical medium, punchcards, papertape, any other physical 65 

medium with patterns of holes, a RAM, a PROM, an EPROM, 
a FLASH-EPROM, a flash drive, a memory card, any other 

memory chip or cartridge, a carrier wave as described here- 
inafter, or any other medium from which a computer canread. 

Various forms of computer readable media may be 
involved in carrying one or more sequences of one or more 
instructions to processor 905 for execution. For example, the 
instructions may initially be carried on a magnetic disk from 
a remote computer. Alternatively, a remote computer can load 
the instructions into its dynamic memory and use an infra-red 
transmitter to convert the data to an infra-red signal. An 
infra-red detector local to computer system 900 can receive 
the data carried in the infra-red signal and appropriate cir-
cuitry can place the data on the data bus 904. The bus 904 
carries the data to the volatile storage 906, from which pro-
cessor 905 retrieves and executes the instructions. The 
instructions received by the volatile memory 906 may option-
ally be stored on persistent storage device 908 either before or 
after execution by processor 905. The instructions may also 
be downloaded into the computer platform 901 via Internet 
using a variety of network data communication protocols well 
known in the art. 

The computer platform 901 also includes a communication 
interface, such as network interface card 913 coupled to the 
data bus 904. Communication interface 913 provides a two-
way data communication coupling to a network link 914 that 
is connected to a local network 915. For example, communi-
cation interface 913 may be an integrated services digital 
network (ISDN) card or a modem to provide a data commu-
nication connection to a corresponding type of telephone line. 
As another example, communication interface 913 may be a 
local area network interface card (LAN NIC) to provide a data 
communication connection to a compatible LAN. Wireless 
links, such as well-known 802.11a, 802.11b, 802.11g, 
802.1 In, 802.1 lac, and Bluetooth may also used for network 
implementation. In embedded avionics implementations of 
the network, one of the standard backplane data buses such as, 
ARINC 629 or an optical avionics data bus may be used. A 
TTP data bus may also be used, such as in automotive and 
aerospace applications. In any such implementation, commu-
nication interface 913 sends and receives electrical, electro-
magnetic or optical signals that carry digital data streams 
representing various types of information. 

Network link 913 typically provides data communication 
through one or more networks to other network resources. For 
example, network link 914 may provide a connection through 
local network 915 to a host computer 916, or a network 
storage/server 917. Additionally or alternatively, the network 
link 913 may connect through gateway/firewall 917 to the 
wide-area or global network 918, such as an Internet. Thus, 
the computer platform 901 can access network resources 
located anywhere on the Internet 918, such as a remote net-
work storage/server 919. On the other hand, the computer 
platform 901 may also be accessed by clients located any-
where on the local network 915 and/or the Internet 918. The 
network clients 920 and 921 may themselves be implemented 
based on the computer platform similar to the platform 901. 

Local network 915 and the Internet 918 both use electrical, 
electromagnetic or optical signals that carry digital data 
streams. The signals through the various networks and the 
signals on network link 914 and through communication 
interface 913, which carry the digital data to and from com-
puter platform 901, are exemplary forms of carrier waves 
transporting the information. 

Computer platform 901 can send messages and receive 
data, including program code, through the variety of net-
work(s) including Internet 918 and local network 915, net-
work link 914 and communication interface 913. In the Inter-
net example, when the system 901 acts as a network server, it 
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might transmit a requested code or data for an application 	e. each of the individual data records being pre-processed 

	

program running on client(s) 920 and/or 921 through Internet 	separately and independently to produce the compressed 

	

918, gateway/firewall 917, local network 915 and communi- 	data; 

	

cation interface 913. Similarly, it may receive code from other 
	

f. the Central Computing Element collects, stores, and 
network resources. 	 5 	post-processes the compressed data from all Local Com- 

	

The received code may be executed by processor 905 as it 	puting Elements to obtain monitoring reporting data, the 

	

is received, and/or stored in persistent or volatile storage 	monitoring reporting data being displayed or transmit- 

	

devices 908 and 906, respectively, or other non-volatile stor- 	ted by the Central Computing Element as the monitoring 

	

age for later execution. In this manner, computer system 901 
	

system output; and 

	

may obtain application code in the form of a carrier wave. 10 	g. the monitoring reporting data is computed based on a 

	

Finally, it should be understood that processes and tech- 	result of an optimal estimation of the model parameters 

	

niques described herein are not inherently related to any 
	

for the plurality of the assets, the model parameters 

	

particular apparatus and may be implemented by any suitable 	comprising model parameters for each of the assets, the 

	

combination of components. Further, various types of general 
	

model parameters and the monitoring reporting data 

	

purpose devices may be used in accordance with the teach- 	15 	computed by the Central Computing Element using 

	

ings described herein. It may also prove advantageous to 	compressed data from all the Local Computing Ele- 

	

construct specialized apparatus to perform the method steps 	ments being the same as if all the asset monitoring data 

	

described herein. The present invention has been described in 	were simultaneously available and used for the optimal 

	

relation to particular examples, which are intended in all 
	

estimation of the model parameters. 

	

respects to be illustrative rather than restrictive. Those skilled 
	

20 	2. The system according to claim 1, wherein the regression 

	

in the art will appreciate that many different combinations of 
	

fit of the asset monitoring data is based on a multi-level 

	

hardware, software, and firmware will be suitable for prac- 	regression model with fixed effects describing asset-to-asset 

	

ticing the present invention. For example, the described soft- 	variability and data record-to-data record trends. 
ware may be implemented in a wide variety of programming 3. The system according to claim 1, wherein the empirical 
or scripting languages, such as Assembler, VHDL, C/C++, 25 covariance matrix comprises a sample second moment matrix 
Matlab/Simulink, Labview, python, perl, Java, ruby, shell for the combined regressors and performance variables. 
scripts, etc. 	 4. The system according to claim 1, wherein the coordi- 

	

Moreover, other implementations of the invention will be 	nated data processing is performed incrementally, by updat- 

	

apparent to those skilled in the art from consideration of the 
	

ing intermediate processing state data and wherein the moni- 
specification and practice of the invention disclosed herein. 30 toring reporting data are computed based on the intermediate 

	

Various aspects and/or components of the described embodi- 	processing state data. 

	

ments may be used singly or in any combination in the inven- 	5. The system according to claim 1, wherein the assets 

	

tive diagnostic and monitoring system. It is intended that the 	comprise at least one of: manufacturing tools, machines, 

	

specification and examples be considered as exemplary only, 	power systems, propulsion systems, ground vehicles, aircraft, 
with a true scope and spirit of the inventionbeing indicated by 35 marine vehicles, weapon systems, structural assets, building 
the following claims. 	 assets, production and service plant assets, assets in power, 

What is claimed is: 	 water and waste treatment facilities, distribution network 

	

1. A system for monitoring a plurality of assets, the assets 	assets, communication network assets, IT system assets and 

	

comprising engineered systems or machines of the same type, 	transport system assets. 

	

the system comprising: at least one Local Computing Ele- 	40 	6. The system according to claim 1, wherein the monitoring 
ments and a Central Computing Element, wherein: 	 reporting data computed by the Central Computing Element 

a. each of the plurality of assets generating asset data for 	comprise the results of at least one of: anomaly detection, 
monitoring of the asset condition or performance; 

	
fault isolation, and trend forecasting for the plurality of the 

b. each of the at least one Local Computing Elements, 	monitored assets. 

	

comprising a processor, is connected to a Local Data 	45 	7. A method for monitoring a plurality of assets, the assets 

	

Repository receiving and storing the asset data as indi- 	comprising engineered systems or machines of the same type, 

	

vidual data records, wherein each of the individual data 	the method being performed in a system comprising at least 

	

records comprises a plurality of data channels from a 	one Local Computing Elements and a Central Computing 

	

corresponding asset of the plurality of assets of the same 
	

Element, the method comprising: 
type collected over a predetermined period of time; 	50 	a. generating, by each of the plurality of assets, asset data 

c. each of the at least one Local Computing Elements is 
	

for monitoring of the asset condition or performance; 

	

connected to the Central Computing Element through a 
	

b. receiving and storing the asset data by a Local Data 
data link; 
	

Repository as individual data records, wherein each of 
d. each of the at least one Local Computing Elements 	the individual data records comprises a plurality of data 

	

pre-processes the individual data records in the Local 
	

55 	channels from a corresponding asset of the plurality of 

	

Data Repository to produce compressed data, wherein 	assets of the same type collected over a predetermined 

	

the pre-processing of the monitoring data generated by 	period of time, wherein each of the at least one Local 

	

each asset comprises computing time series of regres- 	Computing Elements is connected to the Local Data 

	

sion variable vectors, each regression variable vector 
	

Repository and wherein each of the at least one Local 

	

comprising one or more dependent variables and one or 	60 	Computing Elements is connected to the Central Com- 

	

more regressors variables, wherein the data record pre- 	puting Element through a data link; 

	

processing comprises calculating an empirical covari- 	c. pre-processing by each of the at least one Local Com- 

	

ance matrix for the regression variable vector from the 	puting Elements the individual data records in the Local 

	

data record and the compressed data include the empiri- 	Data Repository to produce compressed data, wherein 

	

cal covariance matrixes, the compressed data being 	65 	the pre-processing of the monitoring data generated by 

	

transmitted over the data link to the Central Computing 	each asset comprises computing time series of regres- 
Element; 	 sion variable vectors, each regression variable vector 



US 8,959,065 B2 
21 

comprising one or more dependent variables and one or 
more regressors variables, wherein the data record pre-
processing comprises calculating an empirical covari-
ance matrix for the regression variable vector from the 
data record and the compressed data include the empiri - 5 

cal covariance matrixes, wherein each of the individual 
data records are being pre-processed separately and 
independently to produce the compressed data; 

d. transmitting the compressed data over the data link to the 
Central Computing Element; 	 10 

e. collecting, storing, and post-processing by the Central 
Computing Element the compressed data from all Local 
Computing Elements to obtain monitoring reporting 
data, the monitoring reporting data being displayed or 
transmitted by the Central Computing Element as the 15 

monitoring system output; and 
f. computing the monitoring reporting data based on a 

result of an optimal estimation of the model parameters 
for the plurality of the assets, the said model parameters 
comprising model parameters for each of the assets, the 20 

model parameters and the monitoring reporting data 
computed by the Central Computing Element using 
compressed data from all the Local Computing Ele-
ments being the same as if all the asset monitoring data 
were simultaneously available and used for the optimal 25 

estimation. 
8. The method according to claim 7, wherein the regression 

fit of the asset monitoring data is based on a multi-level 
regression model with fixed effects describing asset-to-asset 
variability and data record-to-data record trends. 	 30 

9. The method according to claim 7, wherein the empirical 
covariance matrix comprises a sample second moment matrix 
for the combined regressors and performance variables. 

10. The method according to claim 7, wherein the coordi-
nated data processing is performed incrementally, by updat- 35 

ing intermediate processing state data and wherein the moni-
toring reporting data are computed based on the intermediate 
processing state data. 

11. The method according to claim 7, wherein the assets 
comprise at least one of: manufacturing tools, machines, 40 

power systems, propulsion systems, ground vehicles, aircraft, 
marine vehicles, weapon systems, structural assets, building 
assets, production and service plant assets, assets in power, 
water and waste treatment facilities, distribution network 
assets, communication network assets, IT system assets and 45 

transport system assets. 
12. The method according to claim 7, wherein the moni-

toring reporting data computed by the Central Computing 
Element comprise the results of at least one of: anomaly 
detection, fault isolation, and trend forecasting for the plural- 50 

ity of the monitored assets. 
13. A non-transitory computer-readable medium embody-

ing a set of instructions, which, when executedby one or more 
processors of a system comprising at least one Local Com-
puting Elements and a Central Computing Element, cause the 55 

one or more processors to perform a method for monitoring a 
plurality of assets, the assets comprising engineered systems 
or machines of the same type, the method comprising: 

a. generating, by each of the plurality of assets, asset data 
for monitoring of the asset condition or performance; 60 

b. receiving and storing the asset data by a Local Data 
Repository as individual data records, wherein each of 
the individual data records comprises a plurality of data 

22 
channels from a corresponding asset of the plurality of 
assets of the same type collected over a predetermined 
period of time, wherein each of the at least one Local 
Computing Elements is connected to the Local Data 
Repository and wherein each of the at least one Local 
Computing Elements is connected to the Central Com-
puting Element through a data link; 

c. pre-processing by each of the at least one Local Com-
puting Elements the individual data records in the Local 
Data Repository to produce compressed data, wherein 
the pre-processing of the monitoring data generated by 
each asset comprises computing time series of regres-
sion variable vectors, each regression variable vector 
comprising one or more dependent variables and one or 
more regressors variables, wherein the data record pre-
processing comprises calculating an empirical covari-
ance matrix for the regression variable vector from the 
data record and the compressed data include the empiri-
cal covariance matrixes, wherein each of the individual 
data records are being pre-processed separately and 
independently to produce the compressed data; 

d. transmitting the compressed data over the data link to the 
Central Computing Element; 

e. collecting, storing, and post-processing by the Central 
Computing Element the compressed data from all Local 
Computing Elements to obtain monitoring reporting 
data, the monitoring reporting data being displayed or 
transmitted by the Central Computing Element as the 
monitoring system output; and 

f. computing the monitoring reporting data based on a 
result of an optimal estimation of the model parameters 
for the plurality of the assets, the said model parameters 
comprising model parameters for each of the assets, the 
model parameters and the monitoring reporting data 
computed by the Central Computing Element using 
compressed data from all the Local Computing Ele-
ments being the same as if all the asset monitoring data 
were simultaneously available and used for the optimal 
estimation. 

14. The non-transitory computer-readable medium accord-
ing to claim 13, wherein the regression fit of the asset moni-
toring data is based on a multi-level regression model with 
fixed effects describing asset-to-asset variability and data 
record-to-data record trends. 

15. The non-transitory computer-readable medium accord-
ing to claim 13, wherein the empirical covariance matrix 
comprises a sample second moment matrix for the combined 
regressors and performance variables. 

16. The non-transitory computer-readable medium accord-
ing to claim 13, wherein the coordinated data processing is 
performed incrementally, by updating intermediate process-
ing state data and wherein the monitoring reporting data are 
computed based on the intermediate processing state data. 

17. The non-transitory computer-readable medium accord-
ing to claim 13, wherein the assets comprise at least one of: 
manufacturing tools, machines, power systems, propulsion 
systems, ground vehicles, aircraft, marine vehicles, weapon 
systems, structural assets, building assets, production and 
service plant assets, assets in power, water and waste treat-
ment facilities, distribution network assets, communication 
network assets, IT system assets and transport system assets. 
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